Eksponencijalna funkcija
U matematici eksponencijalna funkcija je funkcija f(x) = ex gdje je broj e prirodna konstanta i baza prirodnih logaritama. Funkcija f(x) = ex je definirana unutar cijelog skupa realnih brojeva, monotono je rastuća porastom nezavisne varijable x, gdje se brzina rasta povećava kako raste x.
Graf funkcije (slika desno) leži iznad x-osi, ali joj se asimptotski približava kako x teži prema sve manjim negativnim vrijednostima. Brzina rasta funkcije je u svakoj točki jednaka vrijednosti funkcije u toj točki. Inverzna funkcija eksponencijalne funkcije je funkcija prirodnog logaritma f(x) = ln(x) te se u starijim izvorima eksponencijalna funkcija spominje kao antilogaritamska funkcija.
Definicija
urediEksponencijalna funkcija ex može biti definirana kao niz potencija razvijenih u Taylorov red:
Eksponencijalna funkcija se može također izraziti i kao limes:
Kako n raste, vrijednost limesa izraza se sve više približava vrijednosti ex (slika desno).
Jedinstveno svojstvo eksponencijalne funkcije može se izraziti pomoću jednakosti
odnosno napisano drukčije
Zanimljivosti
urediOčito za svaki kada vrijedi Slično se vidi i da Za dovoljno veliki može se pokazati da postoji jedinstvena baza, broj , s kojom se lijevi limes smanjuje jednakom brzinom kao desni, pa možemo reći da razlika ova dva (pozitivna) broja postaje zanemariva, tj. pa je zaista
Ovaj je identitet itekako koristan u realnoj analizi pri izučavanju eksponencijalnih, ali i nekih drugih funkcija. Neka imamo primjerice funkciju Tada možemo pisati Ovo je korisno zbog važnog svojstva funkcije a to je
S druge strane, gore razrađeni identitet je baza kompleksne analize. Defniramo kompleksnu eksponencijalnu funkciju stavljajući gdje je Time se lako dokaže i Eulerova formula.
Derivacija
urediVažnost eksponencijalne funkcije u matematici i znanosti potječe uglavnom iz svojstava njezine derivacije koja ima svojstvo da je
što znači da je funkcija ex ujedno i svoja derivacija. Isto takvo svojstvo imaju i funkcija oblika Kex gdje je K konstanta.
Za sve funkcije takvih svojstava vrijedi da je:
- strmina, odn. nagib grafa funkcije u svakoj točki jednak vrijednosti funkcije u toj točki,
- brzina porasta funkcije za vrijednost slobodne varijable x jednaka vrijednosti funkcije u x,
- eksponencijalna funkcije rješenje diferencijalne jednadžbe y ′ = y.
Štoviše, i drugi oblici diferencijalnih jednadžbi nalaze rješenje u eksponencijalnim funkcijama uključivši Schrödingerovu jednadžbu, Laplaceovu jednadžbu te jednadžbu jednostavnog harmoničkog gibanja.
Eksponencijalna funkcija s realnim brojem a kao bazom
urediPonekad se pojam eksponencijalne funkcije koristi općenitije za funkcije oblika
gdje baza a može biti i bilo koji pozitivni realni broj, a ne nužno broj e.
Za eksponencijalne funkcije s drugim bazama vrijedi da je
Eksponencijalna funkcija u kompleksnoj ravnini
urediEksponencijalna funkcija može se definirati i u kompleksnoj ravnini na nekoliko ravnopravnih načina. Neki od njih odražavaju iste izraze kao i za eksponencijalne funkcije realne varijable. Na primjer, eksponencijalna funkcija kompleksne varijable može se izraziti u obliku reda potencija gdje su realne vrijednosti zamijenjene kompleksnima:
Koristeći ovu definiciju jednostavno je pokazati da jednakost
vrijedi i u kompleksnoj ravnini.
Razmatrana kao funkcija definirana u kompleksnoj ravnini, eksponencijalna funkcija zadržava svoja osnovna svojstva:
za sve kompleksne brojeve z i w. Eksponencijalna funkcija može biti i periodička kada je funkcija imaginarnog argumenta perioda jer vrijedi
i
gdje su a i b realne vrijednosti. Jednakost povezuje eksponencijalnu funkciju s trigonometrijskim funkcijama i dalje s hiperboličkim funkcijama. Štoviše, može se definirati i funkcija oblika ab, gdje su i a i b kompleksne veličine.
Pojam prirodnog logaritma se može također proširiti i na funkciju kompleksnog argumenta ln(z), gdje možemo definirati općenitije da je
za sve kompleksne brojeve z i w. Ovo je također višeznačna funkcija i identitet vrijedi ako se uzme u obzir višeznačnost funkcije. Naime, upravo zbog višeznačnosti funkcije općenito ne vrijedi pravilo množenja eksponenata za pozitivne realne brojeve
Literatura
uredi- Gusić J., Mladinić P., Pavković B., "Matematika 2", Školska knjiga, 2006.
- Antoliš S., Copić A., "Matematika 4", Školska knjiga, 2006.