Jednadžba s apsolutnom vrijednosti

U postupku rješavanja jednadžbe traži se vrijednost nepoznate veličine koja udovoljava uvjetima koje postavlja jednadžba. Ako se nepoznata veličina nalazi pod znakom apsolutne vrijednosti, tada će to u rješavanje jednadžbe unijeti neke nove odnose.

Apsolutna vrijednost broja i nepoznate veličineUredi

Apsolutna vrijednost realnog broja a je izraz |a| koji određuje veličinu broja bez obzira na pozitivan ili negativan predznak. Za svaki realni broj a apsolutna vrijednost broja ili modul od a je definiran kao

  .

Na isti način apsolutna vrijednost realne nepoznate veličine x je izraz |x| gdje je apsolutna vrijednost nepoznate veličine definirana kao

  .

Jednadžba s jednim izrazom apsolutne vrijednostiUredi

Jednostavna jednadžbaUredi

Jednadžba je zadata na način da se nepoznata veličina x nalazi pod znakom apsolutne vrijednosti:

 

Iz jednadžbe slijedi da je:

 

te slijede i rješenja jednadžbe:

 ,

gdje oba rješenja udovoljavaju uvjetu jednadžbe.

Složenija jednadžbaUredi

Jednadžba može biti i zadata u nešto složenijem obliku:

 

odakle najprije slijedi da je:

 

Temeljem definicije apsolutne vrijednosti nepoznate veličine postoje dvije mogućnosti

   

odakle slijedi da je:

 

te

   

odakle slijedi redom:

 
 

te je drugo rješenje jednadžbe:

 

Jednadžba s dva izraza apsolutne vrijednostiUredi

Jednadžbe gdje se nepoznata veličina nalazi pod dva znaka apsolutnih vrijednosti, imat će općenito veći broj rješenja od kojih, obzirom na prirodu apsolutne vrijednosti broja, neka možda i neće zadovoljavati početnu jednadžbu.

Neka je jednadžba zadana u obliku:

 

Temeljem definicije apsolutne vrijednosti nepoznate veličine postoje dvije mogućnosti:

  

   

Iz jednadžbe   slijede daljnje dvije mogućnosti:

   

   .

Iz jednadžbe   slijedi prvo rješenje:

 ,

a iz jednadžbe   slijedi drugo rješenje:

 .

Iz jednadžbe   slijede druge dvije mogućnosti:

   

 
 
 

i

   

 
 
 
 

Prvo i drugo rješenje očito zadovoljava početnu jednadžbu, dok treće i četvrto rješenje ne zadovljava.

LiteraturaUredi

  • Kurnik M., Pavković B., Zorić Ž., "Matematika 1", Školska knjiga, Zagreb, 2006.