Razlika između inačica stranice »Infinitezimalni račun«

bez sažetka
 
<math>\lim_{x\to 0} \frac {sin(x)}{x}\ = 1 </math>
 
<math>\lim_{x\to infinity} (1+ \frac {1}{x}\)= e<math>
 
== Svojstva limesa ==
 
:<math>\begin{matrix}
\lim\limits_{x \to p} & (f(x) + g(x)) & = & \lim\limits_{x \to p} f(x) + \lim\limits_{x \to p} g(x) \\
\lim\limits_{x \to p} & (f(x) - g(x)) & = & \lim\limits_{x \to p} f(x) - \lim\limits_{x \to p} g(x) \\
\lim\limits_{x \to p} & (f(x)\cdot g(x)) & = & \lim\limits_{x \to p} f(x) \cdot \lim\limits_{x \to p} g(x) \\
\lim\limits_{x \to p} & (f(x)/g(x)) & = & {\lim\limits_{x \to p} f(x) / \lim\limits_{x \to p} g(x)}
\end{matrix}</math>
 
 
Anonimni suradnik