Razlika između inačica stranice »Limes (matematika)«

Dodano 10 bajtova ,  prije 11 godina
bez sažetka
== Limes niza ==
 
Neka je <math>(a_n)</math> niz realnih ili kompleksnih brojeva. Reći ćemo da niz <math> (a_n) </math> konvergira broju L( realnirealnan ili kompleksnikompleksnan broj) ako vrijedi <math> (\forall \epsilon > 0(\exists n_0 \in \mathbb{N}) (n\in \mathbb{N} , n> n_0 \Rightarrow |a_n - L|< \epsilon)</math>. Možemo to interpretirati na način da kažemo da za dovoljno velike n-ove članovi niza će biti sve bliže broju L. Poznavajući realne nizove možemo poznavati i kompleskne nizove jer vrijedi da za kompeksan niz <math> (z_n) </math> možemo pisati kao <math> z_n=a_n+ib_n </math>, gdje su <math> a_n </math> i <math> b_n </math> realni nizovi. Ako niz <math> z_n </math> konvergira k <math>z=a+ib </math>, onda vrijedi da je <math>\lim_{n} a_n=a </math> i isto za niz <math>b_n</math>(što je lagano za pokazati).<br>
Ako niz realnih brojeva nije konvergiran kažemo da je divergiran.<br>
Limes niza se "dobro" ponaša i na računske operacije. Za nizove <math> (a_n),(b_n)\subseteq \mathbb{R} </math> takve da <math>\lim_{n} a_n=A,\lim_{n} b_n=B</math> i <math> c \in \mathbb{R}</math> vrijedi:<br>
6

uređivanja