Razlika između inačica stranice »Limes (matematika)«

Dodano 2.528 bajtova ,  prije 11 godina
Uklanjanje izmjene što ju je unio Petarpan (Razgovor sa suradnikom:Petarpan)
(Uklonjen cjelokupni sadržaj stranice)
(Uklanjanje izmjene što ju je unio Petarpan (Razgovor sa suradnikom:Petarpan))
Limes je jedan od osnovnih pojmova u matematičkoj analizi.
 
== Limes niza ==
 
Neka je <math>(a_n)</math> niz realnih ili kompleksnih brojeva. Reći ćemo da niz <math> (a_n) </math> konvergira broju L( realnan ili kompleksnan broj) ako vrijedi <math> (\forall \epsilon > 0(\exists n_0 \in \mathbb{N}) (n\in \mathbb{N} , n> n_0 \Rightarrow |a_n - L|< \epsilon)</math>. Možemo to interpretirati na način da kažemo da za dovoljno velike n-ove članovi niza će biti sve bliže broju L. Poznavajući realne nizove možemo poznavati i kompleskne nizove jer vrijedi da kompeksan niz <math> (z_n) </math> možemo pisati kao <math> z_n=a_n+ib_n </math>, gdje su <math> a_n </math> i <math> b_n </math> realni nizovi. Ako niz <math> z_n </math> konvergira k <math>z=a+ib </math>, onda vrijedi da je <math>\lim_{n} a_n=a </math> i isto za niz <math>b_n</math>(što je lagano za pokazati).<br>
Ako niz realnih brojeva nije konvergiran kažemo da je divergiran.<br>
Limes niza se "dobro" ponaša i na računske operacije. Za nizove <math> (a_n),(b_n)\subseteq \mathbb{R} </math> takve da <math>\lim_{n} a_n=A,\lim_{n} b_n=B</math> i <math> c \in \mathbb{R}</math> vrijedi:<br>
* <math> \lim_n (a_n+b_n)=A+B</math>
* <math> \lim_n (c\cdot a_n)=c\cdot A</math>
* <math> \lim_n (a_n\cdot b_n)=A\cdot B</math>
* <math> B\neq 0 \Rightarrow \lim_n \frac{a_n}{b_n}=\frac{A}{B} </math>
* <math> |\lim_n a_n|=\lim_n |a_n| </math>
== Limes funkcija ==
Neka je <math>\emptyset \neq I \subseteq \mathbb{R} </math>, <math> c\in \langle a,b \rangle </math>,<math>\langle a,b \rangle \setminus \{c\} \subseteq I </math> i <math> f: I \rightarrow \mathbb{R} </math> fukncija. Kažemo da f ima limes <math> L\in \mathbb{R} </math> u točki c ili da f konvergira prema L kada x teži prema c ako vrijedi <math> ((a_n) \subseteq \langle a,b \rangle \setminus \{c\}, \lim_n a_n =c \Rightarrow \lim_n f(a_n)=L </math> što pišemo <math> \lim_{x \rightarrow c} f(x)=L </math>. To možemo izreči na način da kažemo da čim neki niz koji je sadržan u okolini c i teži k c,a nije baš c(jer mi ne znamo jer c u domeni ili ne) da tada niz funkcijskih vrijednosti teži prema L. <br>
Postji i tzv. epsilon-delta definicija koji je ekvivalnetna definiciji preko niza. Pa neka je <math>f:I \rightarrow \mathbb{R}, I \subseteq \mathbb{R} </math>. Kažemo da f ima limes <math> L\in \mathbb{R} </math> u <math>c\in I </math> ako vrijedi
<math> (\forall \epsilon > 0) (\exists \delta > 0) (x\in I , 0<|x-c|<\delta \Rightarrow |f(x)-L|<\epsilon) </math>