Vektor: razlika između inačica

Izbrisani sadržaj Dodani sadržaj
mNema sažetka uređivanja
mNema sažetka uređivanja
Redak 1:
{{dz}}
U elementarnoj [[Matematika|matematici]] i [[Fizika|fizici]], a napose u fizici i [[Tehnika|tehničkim znanostimaprimjenama]], '''vektor''' najčešće označava veličinu koja ima iznos i smjer, te zadovoljava pravila vektorskog računa. Taj se opis odnosi na veličine u trodimenzionalnom prostoru iz našeg svakodnevnog iskustva, koji u matematici najbolje opisuje tzv. [[Euklidski prostor]]. Vektori su uvedeni kao složenije veličine od [[skalar]]a; skalari su u nevedenom kontekstu veličine koje imaju samo brojčanu vrijednost koja može biti pozitivna, 0 ili negativna, tj. opisuju se jednim realnim brojem. Za opis vektora u trodimenzionalnom prostoru potrebna su tri realna broja - npr. jedan za iznos i dva za smjer (kutevi), ili tri skalarne komponente u koordinatnom sustavu. Još složenije veličine od vektora su [[tenzor]]i, preciznije tenzori drugoga reda i viših redova, koji se u trodimenzionalnom prostoru opisuju sa 9, 27 ili više brojeva. U tenzorskom opisu, skalari su tenzori nultoga reda, a vektori su tenzori prvoga reda.
 
OpćenitoFormalno i općenito, međutim, pojam vektora se u matematici, pa i fizici, i u drugim primjenama, definira znatno apstraktnije. Pristup se najčešće temelji na definiciji [[Vektorski prostor|vektorskog prostora]] iz [[Linearna algebra|linearne algebre]] gdje se koriste višedimenzionalni (pa i beskonačno dimenzionalni) prostori nad [[Polje|poljem]] realnih ili kompleksnih skalara. Ipak, i u te opće definicije ugrađene su analogije s gore navedenim slučajem iz "običnog" trodimenzionalnog prostora. Veći dio ovoga članka ukratko izlaže jedan od mogućih "matematičkih" opisa u prostoru od ''n'' dimenzija, no mnogi su rezulatati izravno primjenjljivi na "obične" trodimenzionalne vektore.
 
Iako je to matematičko izlaganje "mekše" od punog formalizma linearne algebre (nije posve općenito, niti su formalno definirani svi korišteni pojmovi), ono ni u tome obliku nije posve blisko i neposredno upotrebljivo za razumijevanje relevantnih koncepata u najčešćim fizikalnim i tehničkim primjenama (a oslanja se i na "matematičku" terminologiju i simbole koji nisu uobičajeni u tehnici). Zato se prije te "matematičke opcije" ukratko opisuje koncept koji je bliži praktičnom "tehničkom" poimanju.
Redak 13:
Vektor se grafički prikazuje pomoću usmjerene dužine (pomoću dužine koja ima strelicu na jednom kraju). Ona pokazuje smjer vektora, a njezina duljina je proporcionalna iznosu vektora. Umjesto načelne proporcionalnosti, iznos vektora može se grafički i precizirati, npr. tako da se naznači koliko njutna kod prikazane sile predstavlja 1 cm na skici. Neke se vektorske veličine doista i mjere u jedinicama za duljinu (npr. u centimetrima), pa ih usmjerena dužina u cjelosti opisuje (npr. vektor položaja ili radij-vektor, te vektor pomaka).
 
Vektorske veličine u fizikalnim primjenama uglavnom su ''slobodni vektori'' ("pravi" vektori), no neke mogu biti ''vezani vektori'' ili pak ''klizni vektori''. Primjerice, kad sila djeluje na deformabilno tijelo, njezin učinak ovisi o tome u kojoj točki zahvaća tijelo: ona je vezani vektor (vezan za tu točku koja se zove hvatište sile). Kad sila djeluje na kruto tijelo, njezin učinak ovisi o pravcu na kojemu leži, ali duž njega može po volji "klizati", pa je klizni vektor. Zato silu prikazujemo kao usmjerenu dužinu koja "počinje" (ili "završava") u svome hvatištu. Drugi primjer vezanog vektora je vektor položaja koji je usmjerena dužina povučena iz referentne točke (ishodišta).

No, kodprilikom različitih matematičkih operacija sa silama i drugim vektorima položaja (zbrajanje itd.), a kod većine drugih vektorskih veličina već i u samom prikazu, svejedno je gdje se pozicionira usmjerena dužina koja ih predstavlja: važan je samo iznos i smjer. To je svojstvo "slobodnih" ili "pravih" vektora: ako se usmjerena dužina paraleno premjesti u prostoru, ona i dalje predstavlja isti vektor.
 
===Zbrajanje vektora===