Nuklearna nesreća: razlika između inačica

Izbrisani sadržaj Dodani sadržaj
Nema sažetka uređivanja
Nema sažetka uređivanja
Redak 142:
;2010-te
* Ožujak 2011 :Fukushima I nuklearna nesreća ,Japan i radioaktivno pražnjenje u Fukushima Daiichi elektrani.
 
 
==Tipovi nesreća==
Za listu mnogih najvažnijih nesreća pogledaj stranicu [[Međunarodna agencija za atomsku enegiju ]]
 
=== Nesreće gubitka rashladnih tekućina ===
{{Main| Gubitak hlađenja }}
{{See also| Taljenje nuklearne jezgre | Nesreće osnova dizajna }}
 
===Kritične nesreće===
Kritična nesreća (također ponekad nazivana „izlet“ ili izlet snage“) događa se kada se lančana nuklearna reakcija slučajno pojavi u fisilnim materijalama kao što su obogaćeni uranij ili plutonij. Černobilska nesreća je jedan primjer kritične neseće. Ova nesreća je uništila reaktor elektrane i učinila veliko geografsko područje nenastanjivim. Na manjoj ljestvici nesreće u Sarovu je tehničar radeći s visoko obogaćenim uranijem bio ozračen dok je pripremao eksperiment koji je uključivao sferu fisilnog materijala. Sarovska nesreća je zanimljiva jer je sistem bio kritičan mnogo dana prije nego što je mogao biti zaustavljen, iako je bio sigurno zaključan u zaštićenoj dvorani za eksperimente. Ovo je primjer nesreće ograničenog područja gdje može biti ozlijeđeno samo nekoliko ljudi, i gdje nije bilo otpuštanja radioaktivnosti u okoliš. Kritična nesreća s ograničenim vanjskim otpuštanjem obje radijacije (gama i neutron) i s malim otpuštanjem radioaktivnosti dogodila se u Tokaimuri u 1999.g. tokom proizvodnje obogačenog uranijskog goriva. Dva radnika su umrla, a treći je trajno ozlijeđen, i 350 stanovnika je bilo izloženo radijaciji.
 
===Toplina raspadanja===
 
Nesreće topline raspadanja su nesreće gdje toplina generirana radioaktivnim raspadanjem uzrokuje štetu. U velikom nuklearnom reaktoru neseća gubitka rashladne tekućine može oštetitit jezgru: na primjer U Three Mile Islandu nedavno isključen (SCRAMed) PWR reaktor je bio ostavljen dugo vremena bez rashladne tekućine. Rezultat je bio oštećenja nuklearnog goriva i jezgra se djelomično istalila. Otklanjanje topline raspadanja je važna sigurnosna briga kod reaktora, naročito kratko nakon isključivanja. Otklanjanje topline se obično postiže kroz nekoliko prekomjernih i različitih sistema, a toplina je rasuta u „konačan toplinski sudoper“ kojiima velik kapacitet i ne zahtjeva aktivnu energiju. Međutim, ova metoda se obično koristi nakon što se toplina raspadanja smanji na jako male vrijednosti. Ipak, glavni razlogotpuštanja radioaktivnosti u Three Mile Islandu bio je pilot-operirajući ventil za otpuštanje na glavnoj petlji koji je zapeo u poziciji otvoreno. Ovo je uzrokovalo prelijevanje spremnika u kojem se potopio uzrokujući puknuće i otpuštanje velikih količina radioaktivne rashladne tekućine u dio koji zatvara reaktor.
 
U 2011.g. potres i tsunami uzrokovali su gubitak energije u dvije elektrane u Fukushimi, Japanu, oštećujući reaktor tako što je toplina raspadanja ostavila nepokriveno 90% štapa za gorivo u jezgri reaktora Daiichi jedinice 3. Sve od 30.svibnja 2011 uklanjanje topline raspadanja još uvijek uzrokuje zabrinutost.
===Transport===
 
Nesreće transporta mogu uzrokovati otpuštanje radiaktivnosti rezultirajući kontaminacijom ili oštećenje zaštite rezultirajući direktnim zaračenjem. U Cochabambi pokvarena oprema gamma radiografije prevozila se u putničkom autobusu kao prtljaga. Gamma izvor je bio izvan štita i ozračio je neke putnike u autobusu.
 
U Ujedinjenim Kraljevstvu otkriveno je u sudskom procesu da je u ožujku 2002.g. radioterapijski izvor transportiran od Leedsa do Sellafielda s oštećenom zaštitom . Zaštita je imala pukotinu na donjoj strani. Misli se da nijedan čovjek nije bio ozbiljno ozlijeđen od pobjegle radijacije.
 
===Kvar opreme===
 
Kvar opreme je jedna od mogućih tipova nesreća. Nedavno u Bialystoku u Poljskoj pokavarila se elektronika povezana s dijelom akceleratora koji se koristio za tretman oboljelih od raka . Ovo je dovelo do prevelike izloženosti najmanje jednog pacijenta. Dok je početni kvar bio jednostavan kvar semiconduktorne diode , on je pokrenuo seriju događaja koja je dovela do radijacijske ozlijede.
 
Srodan uzrok nesreća je kvar software-a, kao u slučajevima koji su uključivali Therac-25 medicinske radioterapijske opreme: eliminacija hardware-skog sigurnosnog zaključavanja u novodizajniranom modelu otkrila je prethodno neopažen bug u kontrolnom software-u, koji je mogao dovesti do toga da u određenim okolnostima pacijenti prime velike prekomjerne doze.
===Ljudska pogreška===
[[Image:Slotin criticality drawing.jpg|thumb|280px|right| Skica koju su doktori koristili da utvrde količinu radijacije kojoj je svaka osoba bila izložena tokom Slotin izleta ]]
Mnoge od velikih nuklearnih nesreća bile su direktno pripisane pogrešci operatera ili ljudskoj pogrešci. Takav zaključak je bio i kod analize nesreće u Černobilu i TMI-2 nesreće. U Černobilu je prije nesreće provođena testna procedura . Voditelji testa su dozvolili operaterima da onemoguće i ignoriraju ključne sigurnosne krugove i upozorenja koji bi normalno isključili reaktor. U TMI-2 operateri su dozvolili tisućama galona vode da oteče iz reaktorskog postrojenja prije nego što su uočili da se rashladne pumpe ponašaju abnormalno. Rahladne pumpe su tako isključene da zaštite pumpe, što je dovelo do uništenja samog reaktora jer nije bilo hlađenja unutar jezgre.
 
Detaljnja istraga u SL-1 ustanovila je da je jedan operater (možda nehotice) ručno izvukao 38 kg težak centralni kontrolni štap oko 26 inča više nego što je procedurom održavanja namjeravano oko 4 inča.
Procjena koju je provela Commissariat a l`Energie Atomique (CEA) u Francuskoj zaključila je da nikakva količina tehničkih inovacija ne može eliminirati rizik pogrešaka izazvanih ljudskim faktorom kod upravljanja nuklearnim elektranama. Dvije vrste pograšaka se smatraju najozbiljnijim: pogreške napravljene tokom terenskog rada, kao što su održavanje i testiranje, koje mogu uzrokovati nesreću; i ljudke pogreške napravljenetokom malih nesreća koje su prerasle u kompletan kvar.
 
U 1946 .g. fizičar kanadskog Manhattan projekta Louis Slotin izvodio je riskantan eksperiment poznat kao „golicanje zmajevog repa“ koje je uključivalo dvije hemisfere neutronski reflektirajućeg berilija koje su se okupile oko plutonijske jezgre da se dovedu do kritične točke. Suprotno procedurama upravljanja hemisfere su bile odvojene samo s odvijačem. Odvijač je skliznuo i pokrenuo lančanu reakciju kritične nesreće ispunjavajući sobu štetnom radijacijom i bljeskom plave svjetlosti ( uzrokovane uznemirenim, ioniziranim zračnim dijelovima koji su se vraćali u stanje mirovanja). Slotin je refleksno odvojio hemisfere u reakciji s bljeskom i plavim svjetlom, sprječavajući daljnje zračenje nekoliko suradnika prisutnih u sobi. Međutim, Slotin je primio smrtonosnu dozu radijacije te je umro nakon devet dana. Ozloglašena plutonijsk masa korištena u eksperimentu nazvana je demonska jezgra.
 
===Izgubljeni izvor===
 
Nesrećeizgubljenog izvora, također nazvane izvori siročad su nesreće gdje je radioaktivni izvor izgubljen, ukraden ili napušten. Izvor može tako prouzročiti štetu ljudima. Na primjer, 1996.g. izvori su bili ostavljeni od sovjetske vojske u Lilo-u , Gruziji. Još jedan slučaj se dogodio u Yanango-u gdje je radiografski izvor izgubljen, isto tako u Samut Prakarn-u fosforni teleterapisjki izvor je izgubljen i u Gilanu u Iranu radiografijski izvor naškodio je zavarivaču. Najbolji primjer događaja ovakvog tipa je Goiania nesreća koja se dogodila u Brazilu.
 
Međunarodna agencija za atomsku energiju obezbijedila je vodiče o tome kako izgleda zapečaćeni izvor za skupljače metalnog otpada . Djelatnost skupljanja metalnog otpadaje najvjerojatnije mjesto gdje će se izgubljeni izvor pronaći.
===Trgovanje radioaktivnim I nuklearnim materijalima===
Informacije dane Međunarodnoj agenciji za atomsku energiju pokazuju „stalan problem sa zabranjenom trgovinom nuklearnim i ostalim radioaktivnim materijalima, krađama, gubljenjem i ostalim neovlaštenim aktivnostima“.
Od 1993.g. do 2006.g. Međunarodna agencija za atomsku energiju (MAAE) potvrdila je 1080 incidenata zabranjen e trgovine, 275 incidenta koji su uključivali neovlašteno posjedovanje i slične kriminalne aktivnosti, 332 incidenta koji su uključivali krađu ili gubljenje nukleranog ili drugog radioaktivnog materijala, 398 indicenata koji su uključivali druge neovlaštene aktivnost, a u 75 incidenata dostavljene informacije nisu bile dovoljne da se odredi kategorija incidenta. Još nekoliko stoitina dodatnih incidenata je prijavljeno u raznim vanjskim izvorima , ali još uvijek nisu potvrđeni.
==Usporedbe==
Uspoređujući povijesne podatke civilne nuklearne energije s ostalim oblicima proizvodnje električne energije , Ball, Roberts i Simpson , MAAE i Institut Paul Scherrer pronašli su u odvojenim studijama da je tokom perioda od 1970.g. do 1992.g. širom svijeta bilo samo 39 smrtnih slučajeva na poslu zaposlenih u nuklearnim elektranama, a istovremeno u tom periodu je bilo 6.400 smrtnih slučajeva na poslu zaposlenih u elektranam na ugljen, 1.200 smrtnih slučajeva na poslu zaposlenih u elektranama na plin i članova šire javnosti, i 4.000 smrti članova šire javnosti uzrokovanih hidroelektranama. Posebno, procjenjuje se da elektrane na ugljen ubijaju 24.000 Amerikanaca na godinu uzrokujući plućne bolesti kao i uzrokujući 40.000 srčanih udara na godinu u Sjedinjenim državama. Prema Scientific Americanu prosječna elektrana na ugljen emitira 100 puta više radijacije na godinu u vidu otrovnog otpada ugljena znanog kao leteći pepeo nego nuklearna elektrana jednake veličine
 
Novinarka Stephanie Cooke kaže da nije dobro uspoređivati nesreće samo prema broju neposrednih smrti, već je važno i kako su ljudski životi poremećeni kao u slučaju japanske nuklearne nesreće 2011.g. gdje je 80.000 stanovnika moralo biti evakuirano iz okoline oko elektrane Fukushima
<blockquote>
Danas u Japanu imate ljudi koji se suočavaju s izborom da li da se zauvijek ne vrate svojim kućama ili da se vrate i žive na kontaminiranom podruelektranakoje čju.... I znajući da koju god hranu jedu da bi mogla biti kontaminirana i da će uvijek živjeti s a sjenom straha koja visi nad njima da će umrijeti rano od raka... Nisam veliki pobornik sagorijevanja ugljena. Ne mislim da je ijedna od tih velikih elektrana koje ispuštaju zagađenje u zrak dobra. Ali mislim da nije dobro raditi ovakve usporedbe samo na osnovu broja smrtnih slučajeva..<ref name=Quince>{{cite web |url=http://www.abc.net.au/rn/rearvision/stories/2011/3176675.htm |title=The history of nuclear power |author=Annabelle Quince |date=30 March 2011 |work=ABC Radio National }}</ref>
</blockquote>
 
U okvirima energetskih nesreća hidroelektrane su odgovorne za najveći broj smrtnih slučajeva , ali nesreće nuklearnih elektrana rangirane su na prvom mjestu prema iznosu ekonomske štete iznoseći 41% od svih imovinskih šteta. Naftna i hidroenergija slijede s 25% svaka, iza toga slijedi prirodni plin i ugljen. Nakon Černobila i Shimantan Dama tri najskuplje nesreće su bile izljevanje nafte Exxon Valdez (Aljaska), izljevanje nafte Prestige (Španjolska) i Three Mile Island nuklearna nesreća (Pensilvanija).
 
==Nuklearna sigurnost==
{{Main|Nuklearna sigurnost}}
Nuklearna sigurnost obuhvaća akcije poduzete da spriječe nuklearne i radijacijske nesreće ili da ograniče njihove posljedice. Ovo pokriva kako nuklearne elektrane tako i sva ostala nuklearna sredstva, transport nuklearnih materijala , korištenje i skladištenje nuklearnih materijala za mesicinske, energetske, industrijske i vojne svrhe.
 
Industrija nuklearne energije je povećala sigurnost i učinak reaktora, i ponudila novi sigurniji (ali općenito netestirani) dizajn reaktora, ali nema garancije da će reaktori biti dizajnirani, napravljeni ispravno i da će raditi na ispravan način. Pogreške se pojavljuju i dizajneri reaktora u Fukushimi u Japanu nisu predvidjeli da će tsunami pokrenut potresom onesposobiti pričuvne sisteme koji su trebali stabilizirati reaktor nakom potresa. Prema UBS AG, Fukushima I nuklearna nesreća bacila je sumnju na to da čak i napredna ekonomija kao što je Japan može svladati nuklearnu sigurnost. Uvjeljive su i mogućnosti katastrofičnih scenarija terorističkih napada.
 
Interdisciplinarni tim s MIT-a je ustanovio da je s očekivanim rastom nuklearne energije od 2005-2055.g. za očekivati da će se dogoditi najmanje četiri ozbiljne nuklearne nesreće u tom periodu. Do danas je bilo pet ozbiljnih nesreća (oštećenje jezgre) u svijetu od 1970.g. (jedna u Three Mile Island 1979.g., jedna u Černobilu 1986.g. i tri u Fukushima-Daiichi 2011.g.) povezanih s početkom rada generacije II raktora.To je prosječno jedna ozbiljna nesreća svakih osam godina.
 
Sigurnost nuklearnog naoružanja, kao i sigurnost vojnih istraživanja koja uključuju nuklearne materijale, je uglavnom posao agencija različitih od onih koje nadgledaju civilnu sigurnost, i to iz različitih razloga uključujući i tajnost. Prisutna je stalna zabrinutost oko toga da terorističke grupe stječu materijale za izradu nuklearne bombe.