Kubna funkcija: razlika između inačica

Dodano 1.988 bajtova ,  prije 6 godina
bez sažetka
No edit summary
No edit summary
'''Kubna funkcija''' u matematici je svaka [[funkcija]] oblika:
:<math>f(x)=ax^3+bx^2+cx+d \,qquad(1)</math>,
gdje je ''a'' različito od nule. Pripadna jednadžba <math>f(x)=0</math> je [[kubna jednadžba]]. U pravilu, a naročito u nastavi matematike u srednjoj školi, misli se na [[realna funkcija|realnu funkciju]] [[varijabla|realne varijable]] , što znači da su [[koeficijent|koeficijenti]] ''a'',''b'',''c'',''d'' realni brojevi, a vrijednosti varijable ''x'' realne. Od sada se, ukoliko izrijekom ne bude rečeno drukčije, razmatraju samo takve funkcije.
 
 
[[Prijevojna točka]] (točka infleksije) funkcije jest ona vrijednost od ''x'' za koju je druga derivacija jednaka nuli. Kako je ''f''''(''x'')=6''ax''+2''b'', kubna funkcija ima jedinstvenu prijevojnu točku i to <math> x_0=-\frac{b}{3a} \, </math>, koja je ujedno i kritična ako je <math> b^2-3ac=0 \, </math>, inače nije. Graf kubne funkcije uvijek se sastoji od konveksnog i konkavnog dijela, koji se sastaju u prijevojnoj točki. Ako je ''a'' pozitivan prvo dolazi konkavni, a ako je negativan, konveksni dio.
 
 
 
 
 
==Primjena kubne funkcije ==
Obično se smatra da između kubne funkcije i kubnog polinoma nema nikakve razlike. Strogo matematički gledano, to nije tako. Osim zadavanja pravila prema kojemu djeluje, za funkciju je potrebno naznačiti [[područje definicije]] i [[područje vrijednosti]], dok se polinom zadaje koeficijentima i naznačavanjem područja kojemu koeficijenti pripadaju (u pravilu neki [[komutativni prsten]]). Ostatci 0,1,2 pri dijeljenju s 3 čine [[polje]] s obzirom na zbrajanje i množenje modulo 3. Izrazima <math> f(x)=x^3+2x \, </math> i <math> f(x)=2x^3+x \, </math> zadana su dva različita polinoma nad tim poljem (jer su koeficijenti različiti). Također, zadane su i dvije funkcije kojima su i područje definicije i skup vrijednosti to polje. Te su dvije funkcije jednake (sve su im vrijednosti jednake nuli). Dakle različiti polinomi, ali jednake funkcije.
 
== Kompleksna kubna funkcija ==
Ako se u (1) koeficijenti ''a'',''b'',''c'',''d'' i vrijednosti varijable ''x'' kompleksni brojevi (tada se varijabla obično označava kao ''z''), onda su i vrijednosti funkcije kompleksni brojevi pa je ''f'' [[kompleksna funkcija]] kompleksne varijable, tj. <math> f\colon \mathbb{C}\rightarrow \mathbb{C}</math>. Ona je analitička na cijeloj [[kompleksna ravnina|kompleksnoj ravnini]]. Kompleksna kubna funkcija ima tri različite nultočke, dvije različite (od kojih je jedna dvostruka) ili jednu trostruku nultočku. Računajući kratnosti, svaka kompleksna kubna funkcija ima tri nultočke.
 
S obzirom na kritične vrijednosti ove se funkcije dijele na dvije skupine,već prema tome koliko njihova derivacija (koja je [[kvadratna funkcija]]) ima nultočaka. U prvoj su one koje imaju jednu kritičnu točku, a to su one ''f'' kojima derivacija ''f' '' ima dvostruku nultočku. One imaju jednu kritičnu vrijednost (vrijednost funkcije u kritičnoj točki).
Svaka takva funkcija oblika je <math> f(z)=a(z-z_0)^3+f(z_0)\ ,z_0</math> joj je kritična točka, a <math> f(z_0) </math> kritična vrijednost. U drugoj su skupini one koje imaju dvije kritične točke, a to su upravo one za koje ''f' '' ima dvije različite nultočke. One imaju dvije kritične vrijednosti (jer su vrijednosti kubne funkcije u različitim kritičnim točkama nužno različite).
 
Kritične vrijednosti u ovakvim okolnostima imaju posebno značenje i posebno ime: [[razgranište|razgraništa]] ili [[točka grananja|točke grananja]] preslikavanja ''f''. Ako se kompleksna varijabla slike označi kao ''w'', onda se ovo preslikavanje može zapisati i kao jednadžba <math> f(z)=w</math>. Ta jednadžba za svaki ''w'' koji nije točka grananja ima tri različita rješenja kao jednadžba s nepoznanicom ''z''. Tako je preslikavanje ''f'' [[razgranato natkrivanje]] kompleksne ravnine stupnja 3.
 
=== Kubna funkcija kao preslikavnje proširene kompleksne ravnine ===
 
==Literatura==