Kubna funkcija: razlika između inačica

Dodano 189 bajtova ,  prije 6 godina
dopuna podataka u →‎Literaturi
(iz popisa literature izbačen neprikladan naslov)
(dopuna podataka u →‎Literaturi)
'''Kubna funkcija''' u matematici je svaka [[funkcija]] oblika
:<math>f(x)=ax^3+bx^2+cx+d \qquad(1)</math>,
gdje je ''a'' različito od nule. Pripadna jednadžba <math>f(x)=0</math> je [[kubna jednadžba]]. U pravilu, a naročito u nastavi matematike u srednjoj školi, misli se na [[realna funkcija|realnu funkciju]] [[varijabla|realne varijable]] , što znači da su [[koeficijent|koeficijenti]] ''a'',''b'',''c'',''d'' realni brojevi, a vrijednosti varijable ''x'' realne. Od sada se, ukoliko izrijekom ne bude rečeno drukčije, razmatraju samo takve funkcije <ref>Jelena Gusić, Petar Mladinić, Boris Pavković, Matematika 2,za 2. razred za prirodoslovno -matematičke gimnazije, Školska knjiga, Zagreb, 2006.(ISBN 953-0-21345-X)</ref>
 
==Karakteristične vrijednosti kubne funkcije ==
 
===Ekstremi kubne funkcije i prijevojna točka===
[[kritična točka (matematika)|Kritične točke]] funkcije jesu one (realne) vrijednosti od ''x'' za koje je prva [[derivacija (matematika)|derivacija]] jednaka nuli <ref>Sanja Antoliš, Aneta Copić, Matematika 4, udžbenik sa zbirkom zadatataka za 4. razred prirodoslovnih gimnazija, Školska knjiga, Zagreb, 2006. (ISBN 953-0-21349-2)</ref>.
Kako je ''f'''(''x'')= 3''ax''<sup>2</sup>+2''bx''+''c'' [[kvadratna funkcija]] kojoj je [[diskriminanta]] <math> 2\sqrt{b^2-3ac}\, </math> , kubna funkcija ima dva [[lokalni ekstrem| lokalna ekstrema]] ( [[lokalni minimum]] i [[lokalni maksimum]]) ako je <math> b^2-3ac >0 \, </math>. Ako je pak <math> b^2-3ac \leq 0 </math>, onda je funkcija strogo monotona. Tada funkcija ima jednu kritičnu točku ako je <math> b^2-3ac =0 </math>, dok za <math> b^2-3ac <0 </math> nema ni jednu.
[[Prijevojna točka]] (točka infleksije) funkcije ''f'' (odnosno njenog grafa) je točka <math>(x_0,f(x_0))</math> tako da je druga derivacija od ''f'' u ''x<sub>0</sub>'' jednaka nuli. Kako je ''f''''(''x'')=6''ax''+2''b'', kubna funkcija ima jedinstvenu prijevojnu točku i to za <math> x_0=-\frac{b}{3a} \, </math>, koja je ujedno i kritična ako je <math> b^2-3ac=0 \, </math>, inače nije. Graf kubne funkcije uvijek se sastoji od konveksnog i konkavnog dijela, koji se sastaju u prijevojnoj točki. Ako je ''a'' pozitivan prvo dolazi konkavni, a ako je negativan, konveksni dio. Za funkciju ''f'' prikazanu grafom je
=== Kubna funkcija kao preslikavnje proširene kompleksne ravnine ===
 
Kubna je funkcija [[meromorfna funkcija]] na [[Proširena kompleksna ravnina| proširenoj kompleksnoj ravnini]] <ref name="Hrk"/> <math> \mathbb{C}\cup\{\infty\}</math> ([[Riemannova sfera| Riemannovoj sferi]]) - ima [[pol]] trećeg reda u [[beskonačnost]]i. Razmatrana kao funkcije s Riemannove sfere na Riemannovu sferu, tako de se definira da je <math>f(\infty)=\infty</math>, ona je holomorfna (analitička je i oko beskonačnosti). Drugim riječima, kompleksna kubna funkcija definira razgranato natkrivanje trećeg stupnja s Riemannove sfere na Riemannovu sferu. Beskonačnost (<math>\infty</math>) je točka grananja tog natkrivanja koje općenito ima tri, iznimno dvije točke grananja (uključujući rečenu točku grananja u beskonačnosti). Općenito, [[grupa monodromije]] izomorfna je [[simetrična grupa|simetričnoj grupi]] <math>\mathbb{S}_3</math>, a iznimno, [[ciklička grupa|cikličkoj grupi]] trećeg reda <ref>Rick Miranda, Algebraic Curves and Riemann Surfaces, Graduate Studies in Mathematics, Vol 5, (ISBN 0-8218-0268-2)</ref>.