Heisenbergovo načelo neodređenosti: razlika između inačica

Izbrisani sadržaj Dodani sadržaj
Nema sažetka uređivanja
Redak 77:
Što implicira da kvantna stanja ne mogu biti istovremeno vlastita funkcija položaja i količine gibanja. Drugim riječima: mjerenjem položaja, količina gibanja će biti neodređena, i obrnuto.
 
===von Neumannov izvod===
 
(Ref <ref>{{Literatur |Autor=[[Johann von Neumann|Johann v. Neumann]] |Titel=Mathematische Grundlagen der Quantenmechanik. Unveränderter Nachdruck der 1. Auflage von 1932. Kapitel III „Die quantenmechanische Statistik“. Abschnitt&nbsp;4 „Unbestimmheitsrelationen“ |Reihe=Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen |Band=38 |Auflage=1 |Verlag=[[Springer Science+Business Media|Springer-Verlag]] |Ort=Berlin u.&nbsp;a. |Jahr=1968 |ISBN=3-540-04133-8 |Seiten = 123–124}}</ref>)
 
Definiramo:
 
* [[Hilbertov prostor]] <math>\mathcal{H}</math>,zajedno sa skalarnim produktom <math>\langle \cdot , \cdot \rangle</math> i normom <math>\| \cdot \| = {\langle \cdot , \cdot \rangle }^{\frac{1}{2}}</math>, te sa<math>\mathbf{1}_{\mathcal{H}}</math> kao operatorom identiteta u <math>\mathcal{H}\;</math>;
* [[Samoadjungirane linearne operatore]] u <math>\mathcal{H}</math> kao <math>\hat {A}\colon \mathcal{H} \supset D(\hat {A}) \to \mathcal{H}</math> i <math>\hat {B}\colon \mathcal{H} \supset D(\hat {B}) \to \mathcal{H}</math> sa <math>[\hat {A},\hat {B}] = a \mathbf{1}_{\mathcal{H} }</math>, gdje je <math>a \in \C \setminus \{ 0 \}</math>;
* Te <math>\psi \in { \; \bigl( D(\hat {A}) \cap D(\hat {B}) \cap {\hat {A}}^{-1} (D(\hat {B})) \cap {\hat {B}}^{-1} (D(\hat {A})) \bigr) \; } \subseteq \mathcal{H}</math> sa normom <math>\| \psi \| = 1</math> &nbsp;.
 
Tada Heisenbergove relacije možemo izvesti u četiri koraka:
 
'''Korak 1:'''
 
Neka je
 
:<math>\operatorname{Im}{ \langle \hat {A} \psi , \hat {B} \psi \rangle }
= \frac{ \langle \hat {A} \psi,\hat {B} \psi \rangle - \langle \hat {B} \psi, \hat {A} \psi \rangle }{ 2 \mathrm {i} }</math>
 
Stoga:
:<math>2 \cdot \operatorname{Im}{ \langle \hat {A} \psi, \hat {B} \psi \rangle}
= -\mathrm {i} \cdot ( \langle \hat {B}\hat {A} \psi, \psi \rangle - \langle \hat {A}\hat {B} \psi,\psi \rangle )
= -\mathrm {i} \cdot \langle \hat {B}\hat {A} \psi - \hat {A}\hat {B} \psi,\psi \rangle</math>
<math>
= \mathrm {i} \cdot \langle (\hat {A}\hat {B} - \hat {B}\hat {A}) \psi,\psi \rangle
= \mathrm {i} \cdot \langle [\hat {A},\hat {B}] \psi,\psi \rangle
= \mathrm {i} \cdot \langle a \mathbf{1}_{\mathcal{H} } \psi,\psi \rangle</math>
<math>
= \mathrm {i} \cdot a \cdot \langle \psi,\psi \rangle</math>
<math>
= \mathrm {i} \cdot a \cdot { \| \psi \| }^2</math>
 
Što znači:
 
:<math>{ \| \psi \| }^2
= -{\frac{2 \mathrm {i}}{ a }} \cdot \operatorname{Im}{ \langle \hat {A} \psi,\hat {B} \psi \rangle }
\leq {\frac{2}{ |a| }} \cdot | \langle \hat {A} \psi , \hat {B} \psi \rangle |</math>
 
Pa iz [[Cauchy-Schwarzova nejednakosti|Cauchy-Schwarzove nejednakosti]] slijedi:
 
:<math>{ \| \psi \| }^2
\leq {\frac{2}{ |a| }} \cdot \| \hat {A} \psi \| \cdot \| \hat {B} \psi \|</math>
 
'''Korak 2:'''
 
Neka su <math>r, s \in \R</math> dva prozivoljna [[Skalarni umnožak|skalara]], te definirajmo <math>{\hat {A}}_r = \hat {A} - r \mathbf{1}_{\mathcal{H} }</math> i <math>{\hat {B}}_s = \hat {B} - s \mathbf{1}_{\mathcal{H} }</math>. Stoga, općenito možemo zaključiti da vrijedi:
 
:<math>{ \| \psi \| }^2
\leq {\frac{2}{ |a| }} \cdot \| {\hat {A}}_r \psi \| \cdot \| {\hat {B}}_s \psi \|
= {\frac{2}{ |a| }} \cdot \| \hat {A} \psi - r \psi \| \cdot \| \hat {B} \psi - s \psi \|
</math>
 
'''Korak 3:'''
 
Kao rezultat drugoga koraka, uz <math>\| \psi \| = 1</math>, <math>r = \langle \hat {A} \psi, \psi \rangle</math> i <math>s = \langle \hat {B} \psi, \psi \rangle</math>, imamo:
:<math>\|\hat {A} \psi - \langle \hat {A} \psi,\psi \rangle \psi \| \cdot \| \hat {B} \psi - \langle \hat {B} \psi,\psi \rangle \psi \| \geq {\frac{|a| }{ 2 }} \cdot</math>
 
'''Korak 4:'''
 
Za slučaj kada je <math>a = {\frac{h}{ 2 \pi \mathrm {i}}}</math> , dobivamo rezultat važan za kvantnu mehaniku, odnosno Heisenbergove relacije neodređenosti:
 
:<math>\|\hat {A} \psi - \langle \hat {A} \psi,\psi \rangle \psi \| \cdot \| \hat {B} \psi - \langle \hat {B} \psi,\psi \rangle \psi \| \geq {\frac{h}{ 4 \pi }} \cdot</math>
== Važne relacije neodređenosti ==
 
Line 247 ⟶ 185:
 
Što, kao što vidimo, zadovoljava Heisenbergove relacije neodređenosti.
 
 
==Von Neumannov izvod Heisenbergovih relacija==
 
(Ref <ref>{{Literatur |Autor=[[Johann von Neumann|Johann v. Neumann]] |Titel=Mathematische Grundlagen der Quantenmechanik. Unveränderter Nachdruck der 1. Auflage von 1932. Kapitel III „Die quantenmechanische Statistik“. Abschnitt&nbsp;4 „Unbestimmheitsrelationen“ |Reihe=Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen |Band=38 |Auflage=1 |Verlag=[[Springer Science+Business Media|Springer-Verlag]] |Ort=Berlin u.&nbsp;a. |Jahr=1968 |ISBN=3-540-04133-8 |Seiten = 123–124}}</ref>)
 
Definiramo:
 
* [[Hilbertov prostor]] <math>\mathcal{H}</math>,zajedno sa skalarnim produktom <math>\langle \cdot , \cdot \rangle</math> i normom <math>\| \cdot \| = {\langle \cdot , \cdot \rangle }^{\frac{1}{2}}</math>, te sa<math>\mathbf{1}_{\mathcal{H}}</math> kao operatorom identiteta u <math>\mathcal{H}\;</math>;
* [[Samoadjungirane linearne operatore]] u <math>\mathcal{H}</math> kao <math>\hat {A}\colon \mathcal{H} \supset D(\hat {A}) \to \mathcal{H}</math> i <math>\hat {B}\colon \mathcal{H} \supset D(\hat {B}) \to \mathcal{H}</math> sa <math>[\hat {A},\hat {B}] = a \mathbf{1}_{\mathcal{H} }</math>, gdje je <math>a \in \C \setminus \{ 0 \}</math>;
* Te <math>\psi \in { \; \bigl( D(\hat {A}) \cap D(\hat {B}) \cap {\hat {A}}^{-1} (D(\hat {B})) \cap {\hat {B}}^{-1} (D(\hat {A})) \bigr) \; } \subseteq \mathcal{H}</math> sa normom <math>\| \psi \| = 1</math> &nbsp;.
 
Tada Heisenbergove relacije možemo izvesti u četiri koraka:
 
'''Korak 1:'''
 
Neka je
 
:<math>\operatorname{Im}{ \langle \hat {A} \psi , \hat {B} \psi \rangle }
= \frac{ \langle \hat {A} \psi,\hat {B} \psi \rangle - \langle \hat {B} \psi, \hat {A} \psi \rangle }{ 2 \mathrm {i} }</math>
 
Stoga:
:<math>2 \cdot \operatorname{Im}{ \langle \hat {A} \psi, \hat {B} \psi \rangle}
= -\mathrm {i} \cdot ( \langle \hat {B}\hat {A} \psi, \psi \rangle - \langle \hat {A}\hat {B} \psi,\psi \rangle )
= -\mathrm {i} \cdot \langle \hat {B}\hat {A} \psi - \hat {A}\hat {B} \psi,\psi \rangle</math>
<math>
= \mathrm {i} \cdot \langle (\hat {A}\hat {B} - \hat {B}\hat {A}) \psi,\psi \rangle
= \mathrm {i} \cdot \langle [\hat {A},\hat {B}] \psi,\psi \rangle
= \mathrm {i} \cdot \langle a \mathbf{1}_{\mathcal{H} } \psi,\psi \rangle</math>
<math>
= \mathrm {i} \cdot a \cdot \langle \psi,\psi \rangle</math>
<math>
= \mathrm {i} \cdot a \cdot { \| \psi \| }^2</math>
 
Što znači:
 
:<math>{ \| \psi \| }^2
= -{\frac{2 \mathrm {i}}{ a }} \cdot \operatorname{Im}{ \langle \hat {A} \psi,\hat {B} \psi \rangle }
\leq {\frac{2}{ |a| }} \cdot | \langle \hat {A} \psi , \hat {B} \psi \rangle |</math>
 
Pa iz [[Cauchy-Schwarzova nejednakosti|Cauchy-Schwarzove nejednakosti]] slijedi:
 
:<math>{ \| \psi \| }^2
\leq {\frac{2}{ |a| }} \cdot \| \hat {A} \psi \| \cdot \| \hat {B} \psi \|</math>
 
'''Korak 2:'''
 
Neka su <math>r, s \in \R</math> dva prozivoljna [[Skalarni umnožak|skalara]], te definirajmo <math>{\hat {A}}_r = \hat {A} - r \mathbf{1}_{\mathcal{H} }</math> i <math>{\hat {B}}_s = \hat {B} - s \mathbf{1}_{\mathcal{H} }</math>. Stoga, općenito možemo zaključiti da vrijedi:
 
:<math>{ \| \psi \| }^2
\leq {\frac{2}{ |a| }} \cdot \| {\hat {A}}_r \psi \| \cdot \| {\hat {B}}_s \psi \|
= {\frac{2}{ |a| }} \cdot \| \hat {A} \psi - r \psi \| \cdot \| \hat {B} \psi - s \psi \|
</math>
 
'''Korak 3:'''
 
Kao rezultat drugoga koraka, uz <math>\| \psi \| = 1</math>, <math>r = \langle \hat {A} \psi, \psi \rangle</math> i <math>s = \langle \hat {B} \psi, \psi \rangle</math>, imamo:
:<math>\|\hat {A} \psi - \langle \hat {A} \psi,\psi \rangle \psi \| \cdot \| \hat {B} \psi - \langle \hat {B} \psi,\psi \rangle \psi \| \geq {\frac{|a| }{ 2 }} \cdot</math>
 
'''Korak 4:'''
 
Za slučaj kada je <math>a = {\frac{h}{ 2 \pi \mathrm {i}}}</math> , dobivamo rezultat važan za kvantnu mehaniku, odnosno Heisenbergove relacije neodređenosti:
 
:<math>\|\hat {A} \psi - \langle \hat {A} \psi,\psi \rangle \psi \| \cdot \| \hat {B} \psi - \langle \hat {B} \psi,\psi \rangle \psi \| \geq {\frac{h}{ 4 \pi }} \cdot</math>
 
==Interpretacija relacija neodređenosti==