Razlika između inačica stranice »Koordinatni sustav«

Dodan 4.331 bajt ,  prije 2 godine
Nadopunio Koordinatni sustav
m (→‎top: mrve, replaced: {{mrva-mat}} → {{mrva-geometrija}} using AWB)
(Nadopunio Koordinatni sustav)
[[Slikadatoteka:Cartesian-coordinate-system.svg|mini|250pxdesno|300px|Kartezijev koordinatni sustav.]]
'''Koordinatni sustav''' je sustav u kojemu se položaj [[točka|točaka]] i drugih objekata prikazuje [[broj]]evima koji se zovu '''koordinate'''.
 
[[datoteka:Coord system CA 0.svg|mini|desno|300px|Pravokutni Kartezijev koordinatni sustav.]]
U matematici i drugim područjima postoji više različitih koordinatnih sustava:
 
[[datoteka:SkewCartesianSystem.svg|mini|desno|300px|Primjer kosokutnog koordinatnog sustava.]]
 
[[datoteka:Examples of Polar Coordinates.svg|mini|desno|300px|Polarni koordinatni sustav.]]
 
'''Koordinatni sustav''' je [[sustav]] koji omogućuje da se [[Točka (geometrija)|točke]] na [[Krivulja|krivulji]], [[Pravac|pravcu]], [[Ploha|plohi]], u [[Ravnina|ravnini]] ili [[prostor]]u opišu s pomoću [[broj]]eva, takozvanim '''koordinatama'''. <ref> '''koordinatni sustavi''', [http://www.enciklopedija.hr/Natuknica.aspx?ID=33043] "Hrvatska enciklopedija", Leksikografski zavod Miroslav Krleža, www.enciklopedija.hr, 2018.</ref> U matematici i drugim područjima postoji više različitih koordinatnih sustava:
* [[Kartezijev koordinatni sustav|Kartezijev ili pravokutni koordinatni sustav]]
* [[polarni koordinatni sustav]]
* [[zemljopisne koordinate]]
* [[nebeski koordinatni sustavi]]
 
== Povijest ==
Određivanje položaja s pomoću koordinata bilo je poznato već [[Drevni Egipat|staroegipatskim]] [[Graditeljstvo|graditeljima]] i [[Babilonska astronomija|babilonskim astronomima]]. [[Kartezijev koordinatni sustav]] uveo je [[René Descartes]] ([[Latinski jezik|latinizirano]] ''Renatus Cartesius''). Descartesovo otkriće omogućilo je da se mnoga [[Geometrijsko tijelo|geometrijska tijela]] sustavno proučavaju znatno jačim metodama [[Analitička geometrija|analitičke geometrije]], [[Algebra|algebre]] i analize; tako se na primjer krivulje proučavaju s pomoću [[Jednadžba|jednadžbi]] koje zadovoljavaju koordinate njihovih točaka. Još je značajnije to što je u novije doba veza geometrije, algebre i analize omogućila da geometrijski zor, a time i mnogo plodnija intuicija, budu iskorišteni u rješavanju problema algebre i analize. Zato je Kartezijev koordinatni sustav temelj razvoja i uspjeha moderne [[Linearna algebra|linearne algebre]] ([[vektorski prostor]]), a zatim i mnogih njezinih nadgradnja ([[funkcionalna analiza|funkcionalne analize]], [[diferencijalna geometrija|diferencijalne geometrije]], [[algebarska geometrija|algebarske geometrije]]).
 
== Podjela ==
 
=== Kartezijev koordinatni sustav ===
{{Glavni|Kartezijev koordinatni sustav}}
 
U ravnini je pravokutni '''Kartezijev koordinatni sustav''' određen s dva međusobno okomita pravca ''x'' i ''y'' na kojima su zadani Kartezijevi koordinatni sustavi, [[Ishodište|ishodišta]] kojih su u točki presjecišta pravaca ''x'' i ''y''. Točki ''T'' ravnine pridružuju se dvije koordinate, apscisa i ordinata. Apscisa točke ''T'' koordinata je okomite projekcije te točke na pravac ''x'', a ordinata je koordinata okomite projekcije te točke na pravac ''y''. Na taj način svakoj je točki pridružen uređen par realnih brojeva (''x, y''). Pravci ''x'' i ''y'' nazivaju se koordinatne osi, a pravci njima paralelni koordinatne linije.
 
==== Pravokutni koordinatni sustav ====
'''Pravokutni koordinatni sustav''' ili '''pravokutni Kartezijev koordinatni sustav''' u prostoru određen je trima međusobno okomitim pravcima ''x, y, z'', koji se sijeku u ishodištu ''O'', i s Kartezijevim koordinatnim sustavima na njima. Koordinate se tada zovu apscisa (na osi ''x''), ordinata (na osi ''y'') i aplikata (na osi ''z''). Na taj način svakoj su točki u prostoru pridružena 3 realna broja (''x, y, z'').
 
==== Kosokutni koordinatni sustav ====
'''Kosokutni koordinatni sustav''' ili '''kosokutni Kartezijev koordinatni sustav''' određen je pravcima koji nisu međusobno okomiti, kojemu koordinatne osi nisu međusobno okomite, a umjesto okomitih projekcija pojavljuju se kose projekcije. Katkad ga je prikladno koristiti umjesto pravokutnoga, na primjer u teoriji [[kristal]]a.
 
=== Polarni koordinatni sustav ===
'''Polarni koordinatni sustav''' je koordinatni sustav u [[ravnina|ravnini]] i određen je ishodištem ''O'' i zrakom ''p'' s početkom u ishodištu (polarna os) i jediničnom točkom ''E''. Točki ''T'' ravnine pripadaju tada njezine polarne koordinate: jedna je radijalna koordinata ''r'' = OT, a druga je amplituda ''φ'', koja je mjerni broj kuta što ga zatvara zraka ''p'' sa zrakom kojoj je početak u ishodištu i koja prolazi kroz ''T''.
 
Prijelaz iz Kartezijevih koordinata u ravnini u polarne koordinate u ravnini računa se prema jednadžbama:
 
:<math> r = \sqrt{x^2 + y^2} \quad</math>
:<math>\varphi = \arctan\left(\frac{y}{x}\right) </math>,
 
a prijelaz iz polarnih u Kartezijeve koordinate prema jednadžbama:
 
:<math> x = r \cdot \cos\varphi </math>
:<math> y = r \cdot \sin\varphi </math>
[[Bipolarni koordinatni sustav]] u ravnini sadrži dva pola.
 
== Izvori ==
{{izvori}}
 
{{mrva-geometrija}}
[[Kategorija:Matematika]]