Razlika između inačica stranice »Dobro uređen skup«

Dodano 339 bajtova ,  prije 8 mjeseci
bez sažetka
(Stvorena nova stranica sa sadržajem: »'''Dobro uređen skup''' je svaki onaj totalno uređen skup A za koji vrijedi da mu svaki podskup ima minimalni element (matematika). Osnovni p...«.)
 
'''Dobro uređen skup''' je svaki onaj totalno uređen skup A za koji vrijedi da mu svaki [[podskup]] ima minimalni [[element (matematika)|element]]. Osnovni primjer ove vrste skupa je [[prirodni broj|skup prirodnih brojeva]]. <ref>[https://web.math.pmf.unizg.hr/nastava/studnatj/Krijan_skupovi.pdf Prirodoslovno matematički fakultet u Zagrebu] Ivan Krijan: ''Skupovi'', Zagreb: Sveučilište u Zagrebu, str. 1. (pristupljeno 4. kolovoza 2019.)</ref>
 
Svaki dobro uređen skup je i [[dobro utemeljen skup|dobro utemeljen]], ali ne vrijedi obrat.<ref name=Vuković>[https://www.math.pmf.unizg.hr/sites/default/files/pictures/ts-skripta-2015.pdf Prirodoslovno matematički fakultet u Zagrebu] Mladen Vuković: Teorija skupova; Zagreb: Sveučilište u Zagrebu, siječanj 2015. str. 55.</ref>
 
== Izvori ==