Otvori glavni izbornik

Promjene

Dodano 55 bajtova ,  prije 12 godina
m
→‎Kritika formalizma u matematici: Ljepši font za citate??
Prema Popperu, naime, [[metoda]] nagađanja i odbacivanja vrijedi prvenstveno za [[znanost#prirodne znanosti|empirijske znanosti]], a [[Filozofija|filozofske]] se i matematičke [[teorija|teorije]] uglavnom ne mogu opovrgnuti, već samo kritizirati, jer su "[[aksiom]]i" matematike i filozofije od kojih se kreće u dokazivanju [[metafizika|metafizički]], tj. nedokazivi, a time i neoborivi.
 
Lakatos je međutim zastupao tezu kako falsifikacionistički program i Popperova anti-utemeljiteljska filozofija ne isključuje matematiku. Matematički način izlaganja stvorio je privid da su prva načela izvođenja dokaza neoboriva. Tako, kaže Lakatos,<br>
:: ''{{polytonic|[[Dedukcija|deduktivistički način]] skriva borbu, sakriva pustolovinu. Iščezava cijela priča, uzastopne pokusne formulacije teorema u tijeku dokaznog postupka osuđene su na zaborav, a krajnji je rezultat uzvišen do svete nepogrešivosti.''}} <!-- (DO, 189) -->
Nameće se pitanje na čemu se temelji nepogrešivost aksioma te, ako se ona temelji na [[intuicija|intuiciji]], smijemo li intuiciju smatrati nepogrešivom.<br>
:: ''{{polytonic|Student matematike obvezan je, prema [[Euklid|euklidovskom]] ritualu, slijediti taj čarobnjački čin bez postavljanja pitanja o pozadini ili o tome kako je izveden taj hokus-pokus. Ako slučajno otkrije da su neke od tih neuglednih [[definicija]] proizvedene dokazima, ako ga jednostavno zanima kako te definicije, [[lema|leme]] i teoremi ikako mogu prethoditi dokazu, opsjenar će ga zbog toga pokazivanja matematičke nezrelosti izopćiti.''}} <!-- (DO 188) --><br>
Prava opasnost za matematiku stoga leži u formaliziranju dokaza, jer se time zamagljuju pretpostavke na kojima on počiva. Stoga se "prava priča", priča o nagađanju i opovrgavanju vidi tek kada se niz dokaza i opovrgavanja izloži neformalno.
 
Formalizam je branik filozofije [[logički pozitivizam|logičkog pozitivizma]]. Prema logičkom pozitivizmu, [[rečenica]] je smislena samo ako je [[tautologija|tautologijska]] ili [[iskustvo|empirijska]]. Budući da neformalna matematika nije ni "tautologijska" ni empirijska, mora biti besmislena, krajnja glupost. Te dogme logičkog pozitivizma bile su štetne za povijest i filozofiju matematike. Prema formalistima, matematika je identična s formaliziranom matematikom. Na pitanje što se može otkriti u formaliziranoj teoriji, Lakatos odgovara da su to dvije vrste stvari:<br>
:: ''{{polytonic|[p]rvo, može se otkriti rješenje problema što ih primjereno programiran [[Turingov stroj]] može riješiti u konačnom vremenu […] Nijednog matematičara ne zanima slijeđenje jednolične mehaničke 'metode' propisane takvim procedurama odluke. Drugo, mogu se otkriti rješenja problema (na pr. je li određena formula u neodlučivoj teoriji teorem ili nije) u kojima smo vođeni samo 'metodom' 'neupravljenog uvida i dobre sreće'. No, ta tmurna alternativa između racionalnosti stroja i iracionalnosti slijepog nagađanja ne vrijedi za živu matematiku. Povijest matematike i logika matematičkog otkrića […] ne mogu biti razvijene bez kritike i konačnoga odbacivanja formalizma. Ali formalistička filozofija matematike ima vrlo duboko korijenje. Ona je zadnja karika dugog lanca [[dogma]]tskih filozofija matematike.''}} <!-- (DO, 12-15, provjeriti početak citata, precizno!) --><br>
 
Na drugom mjestu Lakatos je prema formalizmu još kritičniji:
:: ''{{polytonic|Tužno je vidjeti koliko mnogo 'logičara' slijedi ovaj savjet i brzo zaboravlja da je predmet [[logika|logike]] prenošenje [[istina|istine]] a ne nizovi [[simbol]]a […] Njihovim je radom tehnika logike nadjačala svoj predmet i započela svoj izopačeni život.''}} <!-- (Beskonačni regres...95 ff. -->
 
== Interna i eksterna povijest ==
2.987

uređivanja