Razlika između inačica stranice »Limes (matematika)«

Obrisano 7 bajtova ,  prije 11 godina
bez sažetka
* <math> |\lim_n a_n|=\lim_n |a_n| </math>
== Limes funkcija ==
Neka je <math>\emptyset \neq I \subseteq \mathbb{R} </math>, <math> c\in \langle a,b \rangle </math>,<math>\langle a,b \rangle \setminus \{c\} \subseteq I </math> i <math> f: I \rightarrow \mathbb{R} </math> fukncija. Kažemo da f ima limes <math> L\in \mathbb{R} </math> u točki c ili da f konvergira prema L kada x teži prema c ako vrijedi <math> ((a_n) \subseteq \langle a,b \rangle \setminus \{c\}, \lim_n a_n =c \Rightarrow \lim_n f(a_n)=L </math> što pišemo <math> \lim_{x \rightarrow c} f(x)=L </math>. To možemo izreči na način da kažemo da čim neki niz koji je sadržan u okolini c i teži k c,a nije nikad jedanbaš c(jer mi ne znamo jer c u domeni ili ne) da tada niz funkcijskih vrijednosti teži prema L. <br>
Postji i tzv. epsilon-delta definicija koji je ekvivalnetna definiciji preko niza. Pa neka je <math>f:I \rightarrow \mathbb{R}, I \subseteq \mathbb{R} </math>. Kažemo da f ima limes <math> L\in \mathbb{R} </math> u <math>c\in I </math> ako vrijedi
<math> (\forall \epsilon > 0) (\exists \delta > 0) (x\in I , 0<|x-c|<\delta \Rightarrow |f(x)-L|<\epsilon) </math>
6

uređivanja