Elektronska cijev: razlika između inačica

Izbrisani sadržaj Dodani sadržaj
m sit.
m RpA: WP:NI, WP:HRV
 
Redak 4:
 
==Povijest==
Zapažanje [[toplinska emisija|toplinske emisije]] potječe još od druge polovine XIX stoljeća i prvi puta ga je u svom radu zapisao Frederick Guthrie, 1873. godine, premda ga je patentirao [[Thomas Edison]] 1884. godine ne uviđajući sve potencijale otkrića. Prvu elektronsku cijev diodu sa svojstvima propuštanja električne struje u samo jednom smjeru konstruirao je na samom početku XX stoljeća John Ambrose Fleming, engleski fizičar da bi odmah nakon toga Lee De Forest konstruirao svoj "audion", prvu elektronsku cijev s mogućnosti pojačanja, kasnije poznatu pod imenom trioda. Ova otkrića označila su temelje jednog novog područja elektrotehnike: elektronike. Kroz dolazeće godine elektronska cijev je tehnološki usavršavana (bolji vakuum, duža trajnost), dodavane su i izvođene nove rešetke te je elektronska cijev do šezdesetih godina XX stoljeća bila dio većine elektronskih uređaja.
 
==Trioda==
Redak 17:
Druga rešetka imala je prema tome ulogu svojevrstnog “zaslona” i zaklanjala je upravljačku, prvu rešetku od anode. Druga rešetka spajana je na pozitivan potencijal i za izmjenične komponente uzemljena na katodu odgovarajućim kapacitetom. Za razliku od tipične triode tog vremena koja je imala ukupni ulazni kapacite između rešetke i katode kojih 5 pF, ugradnjom druge rešetke ulazni kapacitet je smanjen na otprilike 0.01 pF.
 
Tetroda je mogla osigurati dovoljnu izlaznu snagu za pobudu zvučnika ili odašiljača, mogla je raditi na višim frekvencijama i imala je znatno veći faktor naponskog pojačanja u odnosu na triodu. Međutim, kod triode su odnosi u izlaznom krugu bili nepovoljniji. Pozitivni napon na drugoj rešetci privlačio je elektrone i uzrokovao tijek relativno velike struje uzrokujući kao posljedicu grijanje rešetke , dodatni potrošak snage i opasnost od uništenja elektronske cijevi. Štoviše, druga rešetka privlačila je i sekundarne elektrone koji su se odbijali od anode i imali još dovoljno [[kinetička energija|kinetičke energije]] da stignu na drugu rešetku. To je izazivalo smanjenje anodne struje u određenom radnom području i pojavu negativnog unutarnjeg [[dinamički električni otpor]] otpora diode, gdje se povišenjem anodnog napona jakost anodne struje smanjivala (slika desno). Ugradnjom nove, treće, rešetke riješena je i ova poteškoća.
 
==Pentoda==
[[File:Pentoda symbol.svg|100px|right|]]
[[File:12AE10CompactronTube.jpg|80px|left]]
Treća rešetka spajala se na referentni potencijal ili na potencijal katode te je u odnosu na anodu stvarala takvo električno polje koje je odbijalo sekundarne elektrone i vraćalo ih na anodu. Kako je imala pet elektroda, tako izvedena elektronska cijev zvala se pentoda, a izumio ju je Bernard D. H. Tellegen 1928. godine.
Pentoda je u primjeni dala bolje energetsko iskorištenje, veće radno područje, jednako mali povratni kapacitet anoda/upravljačka rešetka kao kod tetrode te osjetno veći [[unutarnji otpor električnog izvora|unutarnji dinamički otpor]] što joj je davalo znatne prednosti u odnosu na triodu.
 
Redak 30:
[[File:Heptode-Symbol de.svg|130px|left]]
Zamisao o elektronskoj cijevi s dvije upravljačke rešetke koja bi “miješala” ulazne signale bila je u to vrijeme već duže prisutna u istraživačkim krugovima. Isprva je triodi naprosto dodana druga upravljačka rešetka, gdje se takva elektronska cijev nikako nije smjela smatrati tetrodom kojoj je druga rešetka bila na visokom pozitivnom potencijalu. U novoj izvedbi elektronske cijevi miješali su se ulazni signali pomoću dvije upravljačke rešetke i djelovanjem nelinearne prijenosne karakteristike cijevi na izlazu su se pojavili električni signali kojima je frekvencija bila jednaka zbroju, odn. razlici frekvencija ulaznih električnih signala. Međutim, kapacitivna veza između obje upravljačke rešetke bila je prevelika te su se tražila nova rješenja.
Edwin Armstrong je 1918. godine ostvario efekt amplitudne demodulacije koristeći par trioda u istom kućištu elektronske cijevi ugređene u superheterodinski prijemnik, gdje je jedna poslužila kao oscilator, a druga kao miješalo signala. U heptodi se na taj način na katodu druge elektronske cijevi dovodio električni signal oscilatora, na upravljačku rešetku primljeni signal s antene, a signal zbroja i razlika frekvencija pojavljivao se na anodi.
Prve takve elektronske cijevi zvale su se "pentagrid", elektronske cijevi s pet rešetki i sve su manje ili više bile osjetljive na kapacitivnu vezu između pojedinih dijelova elektronske cijevi kao cjeline.
 
Redak 39:
Heksoda je, iznenađujuće, proizvedena nakon heptode, odn. “pentagrid” elektronske cijevi. Razvijena je u Njemačkoj, no od početka je bila zamišljena s odvojenim triodnim oscilatorom. Ulazni signal je doveden na prvu rešetku, rešetke 2 i 4 su, obično interno, spojene zajedno kao zakrilne rešetke kod tetrode, a rešetka 3 poslužila je kao ulaz oscilatora. Glavna je prednost bila što je ulazni signal doveden na prvu rešetku te je time povećana osjetljivost prijemnika.
Slijedile su i druge kombinacije te je, na primjer, u elektronsku cijev ECH35 bio u jedno stakleno kućišteugrađen sustav trioda/hexoda.
 
==Oktoda==
Redak 47:
 
Razvojem elektronskih cijevi s više rešetki dosegnut je na izvjestan način i vrhunac u upotrebi elektronskih cijevi.
Tijekom šezdesetih godina vodeće elektroničke komponente postaju poluvodiči, no elektronske cijevi i do danas ostaju u upotrebi u pojedinim primjenama, prvenstveno u tonfrekvencijskim [[pojačalo|pojačalima]] i pretpojačalima gdje se traži specifična „boja“ zvuka (instrumentalna pojačala, pojačala za vrhunsku reprodukciju zvuka te za neke posebne namjene. Elektronske cijevi se i danas proizvode u malim serijama za audio i još neke posebne primjene, tehnološki usavršene i pouzdanije no karakteristikama jednake najpopularnijim elektronskim cijevima iz prošlosti (ECC 83, EL84, EL 34, i td..
 
==Literatura==