Aksiom izbora

Aksiom izbora je aksiom iz teorije skupova.
Imamo I, proizvoljan neprazan skup i vrijedi
neprazna familija u parovima disjunktnih nepraznih skupova.
U tom slučaju ima skup B takve osobine da je
jednočlan skup za sve .
Drugim riječima, svakom nepraznom skupu je bar jedna jedna funkcija čiji su argumenti neprazni podskupovi tog skupa, a slike su elementi argumenata.[1]
Taj skup B nazivamo izborni skup za familiju [2]
Neke od posljedica aksioma izbora su čudne, kao što je poučak Banach-Tarskog.[3]
Analizom Cantorovih radova nameće se zaključak da skoro svi poučci koje je dobio daju se izvesti iz triju aksioma: aksioma rasprostranjenosti (ekstenzionalnosti), aksioma tj. načela komprehenzije i aksioma izbora.[1]
IzvoriUredi
- ↑ a b Prirodoslovno matematički fakultet u Zagrebu Inačica izvorne stranice arhivirana 24. srpnja 2019. Mladen Vuković: Teorija skupova; Zagreb: Sveučilište u Zagrebu, siječanj 2015. str. 3.
- ↑ Prirodoslovno matematički fakultet u Zagrebu Inačica izvorne stranice arhivirana 4. kolovoza 2019. Ivan Krijan: Skupovi, Zagreb: Sveučilište u Zagrebu, str. 1. (pristupljeno 6. kolovoza 2019.)
- ↑ Prirodoslovno matematički fakultet u Zagrebu Inačica izvorne stranice arhivirana 8. listopada 2019. Mladen Vuković: Neki osnovni pojmovi teorije skupova, 2004. str. 6 (pristupljeno 20. studenoga 2019.)