Aksiom matematičke indukcije

Aksiom matematičke indukcije je aksiom o matematičkoj (potpunoj, totalnoj) indukciji. Omogućava da iz izvjesnih svojstava podskupa zaključimo odnos dvaju skupova. Ovim aksiomom se mogućava i sredstvo je za prouučavati beskonačne skupove, za dokazivati poučke i za definiciju funkcija.

Aksiom glasi:

Neka je skup podskup skupa prirodnih brojeva .

Pretpostavimo dva svojstva skupa :

  1.   

Slijedi zaključak:

Primjeri

uredi

Možda najosnovniji primjer za metodu matematičke indukcije je suma konačno mnogo uzastopnih prirodnih brojeva. Želimo li dokazati tvrdnju, odnosno formulu   možemo postupiti ovako:

Dokazujemo da tvrdnja vrijedi za prvi broj u navedenom skupu, a to je "cijeli" skup  , dakle u ovom slučaju za broj 1:   Time smo dokazali bazu indukcije.

Sada pretpostavljamo da tvrdnja vrijedi barem za jedan broj različit od 1 iz našeg skupa, neka je to m-ti broj iz skupa   Prema tome, pretpostavljamo da vrijedi   (*) Ovo se zove pretpostavka indukcije.

Nadodajmo   na obje strane jednakosti. Vidimo da tada tvrdnja tada vrijedi i za sljedeći broj,   Dakle, pretpostavljamo da je   Sada slijedi ključan korak u ovoj metodi. Prema prvoj pretpostavi lijevu stranu jednakosti (*) možemo napisati kao:   što daje   Time smo dokazali da ako tvrdnja vrijedi za   onda nužno vrijedi i za   Ovaj se dio naziva korakom indukcije.

Pokazali smo da tvrdnja vrijedi za 1. No, onda vrijedi i za 2, onda i za 3, itd. Time smo dokazali da tvrdnja vrijedi  

Sada je jasan aksiom matematičke indukcije.

Izvori

uredi
  1. Kurepa, Svetozar. Matematička analiza 1. Diferenciranje i integriranje. Zagreb: Školska knjiga, 1997.; str. 17-18