Električna reaktancija
Prolaskom kroz električne vodiče i otpornike električna struja nailazi na električni otpor koji je određen strukturalnim osobinama materijala od kojeg je neki električki vodič, odn. otpornik načinjen. Električna struja u električnim strujnim krugovima s električnim otpornicima strogo je razmjerna električnom naponu, a obrnuto razmjerna veličini električnog otpora (u daljnjem tekstu: struja, napon, otpor).
Električni otpor
urediOtpornik ne mijenja veličinu svog otpora veličinom struje koja kroz njega prolazi te ga nazivamo i linearnim elementom. Nadalje, karakteristika ne samo otpornika, već i svih vodiča elektriciteta općenito, je da je njihov otpor u pravilu jednak i za istosmjernu i za sve vrste izmjenične struje bez obzira na frekvenciju ili valni oblik izmjenične struje, gdje je električni otpor određen omjerom sukladno Ohmovom zakonu:
Konačno, i ne manje važno, otpornik kao osnovni elektronički element nema mogućnosti uskladištenja energije. Za razliku od otpornika, električni kondenzatori i električne zavojnice (u daljnjem tekstu: kondenzator, zavojnica) imaju svojstvo pohrane (akumuliranja) energije u obliku električnog ili magnetskog polja.
Kondenzator
urediElektrična reaktancija kondenzatora
urediKondenzator ne provodi istosmjernu električnu struju te za nju predstavlja, u idealnim uvjetima, beskonačno velik otpor. Međutim, priključenjem na istosmjerni električni izvor on će se «nabiti» elektricitetom i upravo ta osobina kondenzatora da pohranjuje energiju imat će posljedicu da će on svojevrstnim povratnim, reaktivnim, djelovanjem utjecati i na jačinu izmjenične struje. Kako je električni kapacitet definiran kao omjer električnog naboja koji postoji na oblogama kondenzatora i odgovarajućeg električnog napona koji se pojavljuje na priključnicama kondenzatora (u daljnjem tekstu: kapacitet, naboj, napon), u statičkim uvjetima vrijedi da je
U dinamičkim uvjetima, međutim, vrijede sljedeći odnosi
iz čega slijedi da je
odnosno općenito
Rješavanje integralnih ili diferencijalnih jednadžbi može se pokazati složenim čak i za jednostavnije električne krugove, no tamo gdje ima više strujnih petlji, električnih izvora i veći broj otpornika i kondenzatora to može predstavljati nepremostivu poteškoću. Štoviše, računanje trenutnih vrijednosti izmjeničnih napona i struja u domeni vremena niti nema neku praktičnu vrijednost. Zato se Fourierovom transformacijom ili Laplaceovom transformacijom za slučaj kontinuirane sinusoidne pobude ( ) čitava integralna jednadžba transformira iz domene vremena u domenu kružne frekvencije kako slijedi
Kondenzatoru, odn. kapacitetu, se na taj način dodjeljuje svojevrstan imaginaran «otpor» u području kružne frekvencije koji nazivamo kapacitivnim reaktivnim otporom ili kapacitivnom reaktancijom:
i odgovarajuća kapacitivna reaktivna vodljivost, odn. kapacitivna susceptancija:
gdje je
Kapacitivni reaktivni otpor kondenzatora se smanjuje porastom frekvencije izmjenične struje strminom 6 dB/oktavi (20 dB/dekadi) da bi za beskonačno visoku frekvenciju postao jednak nuli. Prikazujući napon na kondenzatoru i struju kroz kondenzator vektorima (ponekad se koristi pojam fazora) u kompleksnoj ravnini, ustanovit ćemo da u odnosu na vektor napona koji polažemo, na primjer, na pozitivnu realnu os, vektor struje prethodi vektoru napona za 90 stupnjeva i koji se u takvom slučaju nalazi na pozitivnoj imaginarnoj osi ( ). Uobičajeno je stoga kazati da kod kondenzatora, odn. kapaciteta, fazni pomak struje +90 stupnjeva.
Reaktancija kondenzatora u strujnom krugu
urediReaktancija kondenzatora je, dakle, imaginarna veličina gdje, vrlo pojednostavljeno, integraciju u domeni vremena zamjenljujemo dijeljenjem s prelazeći na taj način u domenu kružne frekvencije. U području kružne frekvencije u strujnim krugovima postupamo vrlo slično strujnim krugovima s istosmjernim izvorima te je rezultantna reaktancija serijskog spoja više kondenzatora jednaka:
dok za paralelni spoj više kapacitivnih reaktancija vrijedi
Reaktancija kondenzatora u stvarnim uvjetima
urediKondenzator s idealnim dielektrikom (idealni kondenzator) vraća u električnu mrežu onoliko energije koliko je i primio. Na taj način u ukupnom energetskoj bilanci kondenzator u idealnim uvjetima ne troši snagu iz električne mreže i ne uzrokuje gubitke energije. U stvarnosti, međutim, kondenzator ima neki konačni otpor dielektrika te ga prikazujemo paralelnim spojem idealnog kondenzatora kapaciteta C, te otpora Rc koji predstavlja otpor dielektrika i uzrokom je gubitaka snage na kondenzatoru. Omjer otpora dielektrika i apsolutne vrijednosti reaktancije kondenzatora određuje kvalitetu kondenzatora te su u tom smislu najkvalitetniji, na primjer, keramički kondenzatori, a znatno nekvalitetniji elektrolitski kondenzatori.
Zavojnica
urediElektrična reaktancija zavojnice
urediZa razliku od kondenzatora, zavojnica pohranjuje energiju u magnetskom polju i dok se kondenzator svojim kapacitetom «protivi» promjeni napona, karakteristika je zavojnice da se svojom induktivnošću «protivi» promjeni struje inducirajući tzv. protuelektromotornu silu određenu diferencijalnom jednadžbom:
Primijenljujući Fourierovu, odn. Laplaceovu transformaciju za slučaj kontinuirane sinusoidne pobude ( ), jednadžba se iz domene vremena transformira u domenu kružne frekvencije :
Zavojnici, odn. induktivitetu se na taj način dodjeljuje svojevrstan imaginaran «otpor» u području kružne frekvencije koji nazivamo induktivnim reaktivnim otporom ili induktivnom reaktancijom:
te induktivna reaktivna vodljivost, odn. induktivna susceptancija:
gdje je
Otpor idealne zavojnice za istosmjernu struju jednak je nuli. Reaktivni otpor zavojnice raste porastom frekvencije strminom 6 dB/oktavi (20 dB/dekadi) i na beskonačno visokoj frekvenciji postaje beskonačno velik. Prikazujući napon na zavojnici i struju kroz zavojnicu vektorima u kompleksnoj ravnini, ustanovit ćemo da u odnosu na vektor napona koji polažemo, na primjer, na pozitivnu realnu os, vektor struje zaostaje za vektorom napona za 90 stupnjeva i koji se u takvom slučaju nalazi na negativnoj imaginarnoj osi ( ). Uobičajeno je stoga kazati da kod zavojnice, odn. induktiviteta, fazni pomak struje -90 stupnjeva.
Reaktancija zavojnice u strujnom krugu
urediReaktancija zavojnice također je imaginarna veličina gdje, vrlo pojednostavljeno, diferenciranje u domeni vremena zamjenljujemo množenjem s te prelazimo na taj način u domenu kružne frekvencije. U području kružne frekvencije u strujnim krugovima postupamo vrlo slično strujnim krugovima s istosmjernim izvorima te je rezultantna reaktancija serijskog spoja više zavojnica jednaka:
dok za paralelni spoj više induktivnih reaktancija vrijedi
Reaktancija zavojnice u stvarnim uvjetima
urediIdealna zavojnica s otporom žice jednakim nuli vraća u električnu mrežu onoliko energije koliko je i primila. Na taj način u ukupnoj energetskoj bilanci zavojnica u idealnim uvjetima ne troši snagu iz električne mreže i ne uzrokuje gubitke energije. U stvarnosti, međutim, zavojnica ima neki otpor vodiča kojim je izvedena te je prikazujemo serijskim spojem idealnog induktiviteta i otpora koji predstavlja radni otpor zavoja zavojnice i koji je uzrokom gubitaka snage u zavojnici. Omjer apsolutnog iznosa reaktancije zavojnice i "ohmskog" otpora zavoja zavojnice određuje kvalitet zavojnice te se one u pravilu izvode vodičima nešto većeg presjeka i što manjeg specifičnog električnog otpora.
Sažetak
urediReaktancija je imaginarna veličina koja ima svoju apsolutnu vrijednost (veličinu) i odgovarajući fazni pomak (argument). S reaktancijama se u osnovi računa kao i s električnim mrežama izvedenim istosmjernim električnim izvorima i otporima, uzimajući naravno u obzir da se matematičke operacije zbivaju u kompleksnoj ravnini. Uz iste uvjete vrijede Ohmov zakon, Kirchhoffovi zakoni, teoremi iz područja električnih mreža (Theveninov poučak, Nortonov poučak i Metoda superpozicije) te druge metode rješavanja linearnih električnih mreža.
Literatura
uredi- Oliver Heaviside, The Electrician, p. 212, 23rd July 1886 reprinted as Electrical Papers, p64, AMS Bookstore, ISBN 0821834657
- Kennelly, Arthur. Impedance (IEEE, 1893)
- Horowitz, Paul; Hill, Winfield (1989). "1". The Art of Electronics. Cambridge University Press. pp. 32–33. ISBN 0-521-37095-7.
- Horowitz, Paul; Hill, Winfield (1989). "1". The Art of Electronics. Cambridge University Press. pp. 31–32. ISBN 0-521-37095-7.